Source code for scikits.odes.dopri5

# -*- coding: utf-8 -*-
# Created on Thu Jan 28 14:59:25 2016
# @author: benny
"""
Making scipy ode solvers available via the ode API
==================================================

dopri5
------
    This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince
    (with stepsize control and dense output).
    The API of this solver is as the other scikit.odes ODE solvers

    Authors:

        E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24, Switzerland e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch

    This code is described in [HNW93].

    This integrator accepts the following options:

        atol : float or sequence absolute tolerance for solution, default 1e-12
        rtol : float or sequence relative tolerance for solution, default 1e-6
        nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver. Default=500
        first_step : float
        max_step : float
        safety : float Safety factor on new step selection (default 0.9)
        ifactor : float
        dfactor : float Maximum factor to increase/decrease step size by in one step
        beta : float Beta parameter for stabilised step size control.
        verbosity : int Switch for printing messages (< 0 for no messages).

References
[HNW93]	(1, 2) E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations i. Nonstiff Problems. 2nd edition. Springer Series in Computational Mathematics, Springer-Verlag (1993)

dop853
------
    This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince
    (with stepsize control and dense output).
    Options and references the same as “dopri5”.

"""

from __future__ import print_function

from collections import namedtuple
from enum import IntEnum
from warnings import warn

import numpy as np

from .ode import OdeBase


SolverReturn = namedtuple(
    "SolverReturn", [
        "flag", "values", "errors", "roots",
        "tstop", "message"
    ]
)

SolverVariables = namedtuple("SolverVariables", ["t", "y"])

[docs]class StatusEnumDOP(IntEnum): SUCCESS = 1 SOLOUT = 2 INPUT_FAIL = -1 NMAX_FAIL = -2 STEPSIZE_FAIL = -3 STIFFNESS_FAIL = -4 UNEXPECTED_IDID = -10
STATUS_MESSAGE = { StatusEnumDOP.SUCCESS: 'computation successful', StatusEnumDOP.SOLOUT: 'comput. successful (interrupted by solout)', StatusEnumDOP.INPUT_FAIL: 'input is not consistent', StatusEnumDOP.NMAX_FAIL: 'larger nmax is needed', StatusEnumDOP.STEPSIZE_FAIL: 'step size becomes too small', StatusEnumDOP.STIFFNESS_FAIL: 'problem is probably stiff (interrupted)', StatusEnumDOP.UNEXPECTED_IDID: 'Unexpected idid, check warnings for info', }
[docs]class DOPSolveException(Exception): """Base class for exceptions raised by `DOP.validate_flags`.""" def __init__(self, soln): self.soln = soln self.args = (self._message.format(soln),)
[docs]class DOPSolveFailed(DOPSolveException): """`DOP.solve` failed to reach endpoint""" _message = ( "Solver failed with flag {0.flag} and finished at {0.errors.t}" "with values {0.errors.y}." )
[docs]class dopri5(OdeBase): try: from scipy.integrate import ode as _runner except ImportError: print(sys.exc_info()[1]) _runner = None name = 'dopri5' default_values = { 'rtol': 1e-6, 'atol': 1e-12, 'nsteps': 500, 'max_step': 0.0, 'first_step': 0.0, # determined by solver 'safety': 0.9, 'ifactor': 10.0, 'dfactor': 0.2, 'beta': 0.0, 'verbosity': -1, # no messages if negative } def __init__(self, Rfn, **options): """ Initialize the ODE Solver and it's default values Parameters ---------- Rfn - right-hand-side function options - additional options for initialization """ self.options = self.default_values self.set_options(rfn=Rfn, **options) self._validate_flags = None self.solver = None self.initialized = False
[docs] def set_options(self, **options): """ Set specific options for the solver. Calling set_options a second time, normally resets the solver. """ for (key, value) in options.items(): self.options[key.lower()] = value self.initialized = False
def _init_data(self): self.rfn = self.options['rfn'] self.N = len(self.y0) def _wrap_Rfn(self, t, y): yout = np.empty(self.N, float) self.rfn(t, y, yout) return yout
[docs] def init_step(self, t0, y0): """ Initializes the solver and allocates memory. Parameters ---------- t0 - initial time y0 - initial condition for y (can be list or numpy array) Returns ------- if old_api: not supported if old_api False: A named tuple, with entries: flag = An integer flag (StatusEnumDop) values = Named tuple with entries t and y and ydot. y will correspond to y_retn value and ydot to yp_retn! errors = Named tuple with entries t_err and y_err roots = Named tuple with entries t_roots and y_roots tstop = Named tuple with entries t_stop and y_tstop message= String with message in case of an error """ self.y0 = y0 self.t = t0 self._init_data() self.solver = self._runner(self._wrap_Rfn)\ .set_integrator(self.name, rtol = self.options['rtol'], atol = self.options['atol'], nsteps = self.options['nsteps'], max_step = self.options['max_step'], first_step = self.options['first_step'], # determined by solver safety = self.options['safety'], ifactor = self.options['ifactor'], dfactor = self.options['dfactor'], beta = self.options['beta'], verbosity = self.options['verbosity'])\ .set_initial_value(y0, t0) self.initialized = True y_retn = np.empty(np.alen(y0), float) y_retn[:] = y0[:] soln = SolverReturn( flag=StatusEnumDOP.SUCCESS, values=SolverVariables(t=t0, y=y_retn), errors=SolverVariables(t=None, y=None), roots=SolverVariables(t=None, y=None), tstop=SolverVariables(t=None, y=None), message=STATUS_MESSAGE[StatusEnumDOP.SUCCESS] ) if self._validate_flags: return self.validate_flags(soln) return soln
[docs] def step(self, t, y_retn=None): """ Method for calling successive next step of the ODE solver to allow more precise control over the solver. The 'init_step' method has to be called before the 'step' method. Parameters ---------- t - A step is done towards time t, and output at t returned. This time can be higher or lower than the previous time. If option 'one_step_compute'==True, and the solver supports it, only one internal solver step is done in the direction of t starting at the current step. If old_api=True, the old behavior is used: if t>0.0 then integration is performed until this time and results at this time are returned in y_retn if t<0.0 only one internal step is perfomed towards time abs(t) and results after this one time step are returned y_retn - numpy vector (ndim = 1) in which the computed value will be stored (needs to be preallocated). If None y_retn is not used. Returns ------- if old_api: not supported if old_api False: A named tuple, with entries: flag = An integer flag (StatusEnumDOP) values = Named tuple with entries t and y. y will correspond to y_retn value errors = Named tuple with entries t_err and y_err roots = Named tuple with entries t_roots and y_roots tstop = Named tuple with entries t_stop and y_tstop message= String with message in case of an error """ if not self.initialized == False: raise ValueError("DOPRI:step: init_step must be run before running the step method.") if t <= self.t: raise ValueError("Integration must be forward! t must be > previous timestep") y = self.solver.integrate(t) y_err = None t_err = None if not self.solver.successful(): flag = StatusEnumDOP.UNEXPECTED_IDID y_err = y t_err = t else: flag = StatusEnumDOP.SUCCESS self.y = y self.t = self.solver.t return SolverReturn( flag=flag, values=SolverVariables(t=self.t, y=y), errors=SolverVariables(t=t_err, y=y_err), roots=SolverVariables(t=None, y=None), tstop=SolverVariables(t=None, y=None), message=STATUS_MESSAGE[flag] )
[docs] def solve(self, tspan, y0): """ Runs the solver. Parameters ---------- tspan - an list/array of times at which the computed value will be returned. Must contain the start time as first entry.. y0 - list/numpy array of initial values Returns ------- if old_api Not supported if old_api False: A named tuple, with entries: flag = An integer flag values = Named tuple with entries t and y errors = Named tuple with entries t and y roots = Named tuple with entries t and y tstop = Named tuple with entries t and y message= String with message in case of an error """ self.initialized = False soln = self.init_step(tspan[0], y0) nrt = len(tspan) t_retn = np.empty(np.shape(tspan), float) y_retn = np.empty([np.alen(tspan), np.alen(y0)], float) t_retn[0] = tspan[0] y_retn[0, :] = y0 idx = 1 while self.solver.successful() and idx<nrt: time = tspan[idx] y = self.solver.integrate(time) t_retn[idx] = time y_retn[idx, :] = y idx += 1 y_err = None t_err = None if not self.solver.successful(): flag = StatusEnumDOP.UNEXPECTED_IDID y_err = y_retn[idx-1] t_err = t_retn[idx-1] # return values computed so far t_retn = t_retn[0:idx-1] y_retn = y_retn[0:idx-1, :] else: flag = StatusEnumDOP.SUCCESS soln = SolverReturn( flag=flag, values=SolverVariables(t=t_retn, y=y_retn), errors=SolverVariables(t=t_err, y=y_err), roots=SolverVariables(t=None, y=None), tstop=SolverVariables(t=None, y=None), message=STATUS_MESSAGE[flag] ) if self._validate_flags: return self.validate_flags(soln) return soln
[docs] def validate_flags(self, soln): """ Validates the flag returned by `dopri.solve`. Validation happens using the following scheme: * failures (`flag` < 0) raise `DOPSolveFailed` or a subclass of it; * otherwise, return an instance of `SolverReturn`. """ if soln.flag == StatusEnumDOP.SUCCESS: return soln if soln.flag < 0: raise DOPSolveFailed(soln) warn(WARNING_STR.format(soln.flag, *soln.err_values)) return soln
[docs]class dop853(dopri5): name = 'dop853' default_values = { 'rtol': 1e-6, 'atol': 1e-12, 'nsteps': 500, 'max_step': 0.0, 'first_step': 0.0, # determined by solver 'safety': 0.9, 'ifactor': 6.0, 'dfactor': 0.3, 'beta': 0.0, 'verbosity': -1, # no messages if negative }
if dopri5._runner: OdeBase.integrator_classes.append(dopri5) if dop853._runner: OdeBase.integrator_classes.append(dop853)